# LETTERS

# DMAP-Catalyzed [2 + 4] Cycloadditions of Allenoates with *N*-Acyldiazenes: Direct Method to 1,3,4-Oxadiazine Derivatives

Qi Zhang,<sup>†</sup> Ling-Guo Meng,<sup>\*,†</sup> Jinfeng Zhang,<sup>†</sup> and Lei Wang<sup>\*,†,‡</sup>

<sup>†</sup>Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China

<sup>‡</sup>State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P.R. China

**Supporting Information** 

**ABSTRACT:** An efficient DMAP-catalyzed [2 + 4] cycloaddition of allenoates and *N*-acyldiazenes is reported. The reaction involved embedding three heteroatoms into a sixmembered ring and generated 1,3,4-oxadiazine derivatives in moderate to good yields.



Heterocyclic skeletons are found in many naturally occurring compounds used in medicinal chemistry.<sup>1</sup> 1,3,4-Oxadiazine is one of the most important frameworks for a variety of bioactive molecules (Figure 1).<sup>2</sup> Although many



Figure 1. Selected examples of biologically active molecules containing a 1,3,4-oxadiazine skeleton.

platforms for the synthesis of various heterocycles have been developed, only a few reports have concerned the synthesis of 1,3,4-oxadiazines, particularly via intermolecular cyclizations.<sup>3</sup> For this reason, the assessment of facile protocols for the efficient generation of 1,3,4-oxadiazines still poses a considerable challenge.

Cyclization is an effective synthetic strategy, and it has been widely used to construct cyclic compounds. Most of the cyclizations can proceed in metallo- and organocatalytic systems. During the past decades, organic base-catalyzed intermolecular cycloaddition, especially for allenoate-based cycloaddition, has been proven as an efficient and environmentally benign method to afford cyclic products from easily available starting materials.<sup>4</sup> Accordingly, the electrophiles,<sup>5</sup> including alkenes,<sup>6</sup> imines,<sup>7</sup> aldehydes,<sup>8</sup> azomethine imines,<sup>9</sup> ylides,<sup>10</sup> and aziridines,<sup>11</sup> reacted with allenoates to form a wide range of carbo- and heterocycles. To continue to explore other organic base-promoted cycloadditions, the expansion of

the scope of electrophile for constructing new heterocycles is highly desirable.

Recently, a desulfonylative [3 + 2] cycloaddition of allylic carbonates with arylazosulfones to pyrazoles in the presence of tertiary phosphine was developed.<sup>12</sup> In continuation of work on the pursuit of other annulations, *N*-acyldiazenes, an important class of diazene with distinctive reactivity, which were often used in carbene-catalyzed cycloadditions with ketenes<sup>13</sup> and aldehydes,<sup>14</sup> have received more attention. To the best of our knowledge, few papers have reported the use of *N*-acyldiazenes in organic base-catalyzed cycloadditions. Unlike reported [2 + 4] cycloadditions using  $\alpha,\beta$ -unsaturated imines, ketones or aldehydes as electrophiles with only one heteroatom in the six-membered ring (Scheme 1, eqs 1 and 2),<sup>15</sup> the synthesis of three heteroatoms in a six-membered ring in one step is rare, especially for organic base-catalyzed annulations. Herein, a DMAP-catalyzed [2 + 4] cycloaddition





 Received:
 May 15, 2015

 Published:
 June 10, 2015

ACS Publications © 2015 American Chemical Society

#### **Organic Letters**

is reported using N-acyldiazenes as electrophiles to mix three heteroatoms in a six-membered ring and generate 1,3,4oxadiazines (Scheme 1, eq 3).

The first investigation was conducted with benzyl allenoate (1a) and phenyl(phenyldiazenyl)methanone (2a) in the presence of 10 mol % of 4-(dimethylamino)pyridine (DMAP) as a catalyst (Table 1, entry 1). 1,3,4-Oxadiazine

| able 1. Optimization of Reaction Conditions <sup>a</sup> |                    |                               |                        |  |
|----------------------------------------------------------|--------------------|-------------------------------|------------------------|--|
| COOEt                                                    |                    |                               | COOEt                  |  |
| PhH <sub>2</sub> C                                       | + 1a catalyst      | (20 mol %)<br>t rt 48 b PhH₂C | - <b>C^</b> -Ph        |  |
| Ph <sup>∕N≳</sup> N                                      | Ph 2a              | n, n, 40 n                    | N-N<br>Ph 3aa          |  |
| entry                                                    | catalyst           | solvent                       | yield <sup>b</sup> (%) |  |
| 1                                                        | DMAP               | toluene                       | 61 <sup>c</sup>        |  |
| 2                                                        | DMAP               | toluene                       | 70                     |  |
| 3                                                        | DMAP               | toluene                       | $71^d$                 |  |
| 4                                                        | DMAP               | toluene                       | 63 <sup>e</sup>        |  |
| 5                                                        | DMAP               | toluene                       | 60 <sup><i>f</i></sup> |  |
| 6                                                        | DMAP               | acetone                       | 65                     |  |
| 7                                                        | DMAP               | EtOAc                         | 61                     |  |
| 8                                                        | DMAP               | CH <sub>3</sub> CN            | 60                     |  |
| 9                                                        | DMAP               | $CH_2Cl_2$                    | 58                     |  |
| 10                                                       | DMAP               | THF                           | 56                     |  |
| 11                                                       | DMAP               | DMF                           | 48                     |  |
| 12                                                       | DMAP               | DMSO                          | <10                    |  |
| 13                                                       | pyridine           | toluene                       | <5                     |  |
| 14                                                       | DABCO              | toluene                       | NR <sup>g</sup>        |  |
| 15                                                       | Et <sub>3</sub> N  | toluene                       | NR                     |  |
| 16                                                       | DBU                | toluene                       | $ND^{h}$               |  |
| 17                                                       | Ph <sub>3</sub> P  | toluene                       | NR                     |  |
| 18                                                       | "Bu <sub>3</sub> P | toluene                       | NR                     |  |
|                                                          |                    |                               |                        |  |

<sup>a</sup>Reaction conditions: 1a (0.30 mmol), 2a (0.20 mmol), catalyst (0.04 mmol, 20 mol %), solvent (2.0 mL), rt, 48 h. <sup>b</sup>Isolated yield. <sup>c</sup>10 mol % of DMAP. <sup>d</sup>30 mol % of DMAP. <sup>e</sup>At 0 °C. <sup>f</sup>At 80 °C. <sup>g</sup>NR = no reaction occurred.  $^{h}$ ND = no desired product was detected.

derivative 3aa was produced in 61% yield via a [2 + 4]cycloaddition pathway. The product yields increased to 70% and 71% after the amount of DMAP was increased to 20 and 30 mol %, respectively (Table 1, entries 2 and 3). Further examination of the reaction temperature indicated that room temperature is the best choice for this [2 + 4] cycloaddition (Table 1, entries 4 and 5). The solvent effect was also examined by screening toluene, acetone, EtOAc, CH<sub>3</sub>CN, CH<sub>2</sub>Cl<sub>2</sub>, THF, DMF, and DMSO (Table 1, entries 6-12), of which toluene was found to be the most suitable medium. Other tertiary amines, such as pyridine, DABCO, Et<sub>3</sub>N, and DBU, were also used as catalysts, giving either poor product yield or no reactions (Table 1, entries 13-16). Meanwhile, tertiary phosphine shut down the cycloaddition completely (Table 1, entries 17 and 18). Optimized reaction conditions were determined using 20 mol % of DMAP as a catalyst in toluene solution at room temperature for 48 h.

With the optimized conditions in hand, the scope of the reaction was expanded to other N-acyldiazenes (2), as illustrated in Scheme 2. The reactions preceded smoothly to give the desired 1,3,4-oxadiazines with good yields in most of the cases. For the monosubstituted Ar<sup>1</sup> groups, both electronrich and electron-poor groups were compatible with these reaction conditions, and no obvious substitution effect was



<sup>a</sup>Reaction conditions: 1a (0.30 mmol), 2 (0.20 mmol), DMAP (0.04 mmol), toluene (2.0 mL), rt, 48 h. <sup>b</sup>Isolated yield.

observed (3aa-ad,ag). For a NO2-substituted diazene involved in the reaction, no desired product 3ae was detected. Using 2f with a Cl on the *ortho*-position of the  $Ar^1$  group only afforded a trace amount of 3af, and this was ascribed to the steric effect (3af vs 3ac and 3ag). Disubstituted Ar<sup>1</sup> groups were also tested, specifically 2,4-dichloro, 3,4-dichloro, and 3,5-dichloro, giving the corresponding products (3ah-aj) in 60-80% yields. Furthermore, changing substituents on the  $Ar^2$  group in substrate 2 was also found to be suitable for the reaction, affording the desired products (3ak-ap) in moderate to good yields, except 3aq and 3ar due to their strong electron-withdrawing and steric effects, respectively. Substrates with two or three electron-rich groups, such as 3,4dimethoxy, 3,5-dimethoxy, and 3,4,5-trimethoxy, reacted with 1a to afford the corresponding products (3as-au) in 70-80% yields. For diazenes 2 having a heteroaromatic or naphthalen-1-yl group  $(Ar^2)$ , the anticipated products (3av-ax) were isolated in 63-69% yields. The structure of 3al was unambiguously confirmed by a single-crystal X-ray analysis.<sup>16</sup>

To further evaluate the scope of this reaction, other  $\gamma$ substituent allenoates and active diazenes were examined, and the results are listed in Scheme 3. Allenoates with different  $\gamma$ substituents, including methyl and ethyl penta-2,3-dienoates, reacted smoothly with various diazenes to produce the



Scheme 3. Scope of Other  $\gamma$ -Substituent Allenoates and Active Diazenes<sup>*a,b*</sup>

 $^a$ Reaction conditions: 1 (0.30 mmol), 2 (0.20 mmol), DMAP (0.04 mmol), toluene (2.0 mL), rt, 48 h.  $^b$ Isolated yield.

corresponding 1,3,4-oxadiazines in modest yields. *N*-Acetyldiazene is an effective electrophile. It reacted with 1a, albeit producing **3ay** in only 33% yield. However, reaction with *N*carbopropoxy-substituted diazene failed (**3az**).

A plausible mechanism was proposed for this [2 + 4] cyclization, as depicted in Scheme 4. The first step involves the activation of allene ester 1a by DMAP to generate a zwitterionic intermediate **A**. Subsequent  $\gamma$ -nucleophilic attack of the electrophile 2a provided **B**, which underwent intramolecular Michael addition of oxygen anion to carbon atom to produce intermediate **C**. Finally, the catalyst DMAP was eliminated, and the C=C double bond was regenerated, to afford the product 3aa.

In summary, a direct synthetic method for the preparation of 1,3,4-oxadiazins via a DMAP-catalyzed [2 + 4] cycloaddition of allenoates with *N*-acyldiazenes is reported here. The reactions generated the corresponding products with good yields in most cases under simple and mild reaction conditions. This organic base-catalyzed one-step cycloaddition reaction generated three heteroatoms in a six-membered ring, providing new synthetic protocols for further heterocyclic

#### Scheme 4. Proposed Mechanism



synthesis. Further development of diazenes is currently underway.

# ASSOCIATED CONTENT

#### **Supporting Information**

Full experimental details and characterization data for all products. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/ acs.orglett.5b01237.

### AUTHOR INFORMATION

**Corresponding Authors** 

- \*E-mail: milig@126.com.
- \*E-mail: leiwang88@hotmail.com.

## Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work is financially supported by the National Science Foundation of China (Nos. 21372095 and 21402061).

#### REFERENCES

(1) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.

(2) (a) Dekeyser, M. A.; Mitchell, D. S.; Downer, R. G. H. J. Agric. Food Chem. 1994, 42, 1783. (b) Trepanier, D. L.; Krieger, P. E.; Eble, J. N. J. Med. Chem. 1965, 8, 802. (c) Shindy, H. A.; El-Maghraby, M. A.; Eissa, F. M. Dyes Pigments 2006, 70, 110. (d) Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Eshghi, H.; Vaziri-Mehr, S.; Pordeli, P.; Nikpour, M. Heterocycl. Commun. 2011, 17, 49. (3) (a) Matsubara, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 7993. (b) Kristinsson, H.; Winkler, T.; Mollenkopf, M. Helv. Chim. Acta 1986, 69, 333. (c) Aly, A. A.; Ehrhardt, S.; Hopt, H.; Dix, I.; Jones, P. G. Eur. J. Org. Chem. 2006, 335. (d) Milcent, R.; Barbier, G. J. Heterocycl. Chem. 1992, 29, 1081. (e) Ismail, S. M. M.; Baines, R. A.; Downer, R. G. H.; Dekeyser, M. A. Pestic. Sci. 1996, 46, 163. (f) Bassam, F.; Jones, R. G. Chem. Commun. 1979, 917. (g) Tiecco, M.; Testaferri, L.; Marini, F. Tetrahedron 1996, 52, 11841. (h) Jones, R. A.; Gonzalez, B. A.; Arques, J. S.; Pardo, J. Q.; King, T. J. J. Chem. Soc., Perkin Trans. 1 1984, 1423.

(4) For selected reviews about organic base-catalyzed intermolecular cycloadditions, see: (a) Fan, Y. C.; Kwon, O. *Chem. Commun.* 2013, 49, 11588. (b) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. *Chem. Commun.* 2012, 48, 1724. (c) Ye, L.-W.; Zhou, J.; Tang, Y. *Chem. Soc. Rev.* 2008, 37, 1140. (d) Denmark, S. E.; Beutner, G. L. *Angew.* 

# **Organic Letters**

Chem., Int. Ed. 2008, 47, 1560. (e) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520. (f) Lu, X.; Du, Y.; Lu, C. Pure Appl. Chem. 2005, 77, 1985. (g) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. (h) Valentinejr, D. H.; Hillhouse, J. H. Synthesis 2003, 317. (i) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.

(5) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
(6) For selected cycloaddition examples using alkenes as electrophiles, see: (a) Li, E.; Huang, Y. Chem.—Eur. J. 2014, 20, 3520.
(b) Chen, X.-Y.; Wen, M.-W.; Ye, S.; Wang, Z.-X. Org. Lett. 2011, 13, 1138. (c) Steurer, M.; Jensen, K. L.; Worgull, D.; Jørgensen, K. A. Chem.—Eur. J. 2012, 18, 76. (d) Du, Y.; Lu, X.; Zhang, C. Angew. Chem., Int. Ed. 2003, 42, 1035. (e) Lu, X.; Lu, Z.; Zhang, X. Tetrahedron 2006, 62, 457. (f) Guan, X.-Y.; Shi, M. J. Org. Chem. 2009, 74, 1977. (g) Zheng, J.; Huang, Y.; Li, Z. Org. Lett. 2013, 15, 5758. For other related examples, see: (h) Jia, S.; Su, S.; Li, C.; Jia, X.; Li, J. Org. Lett. 2014, 16, 5604. (i) Su, S.; Li, C.; Jia, X.; Li, J. Chem.—Eur. J. 2014, 20, 5905. (j) Li, J.; Wang, N.; Li, C.; Jia, X. Chem.—Eur. J. 2012, 18, 9645.

(7) For selected cycloaddition examples using imines as electrophiles, see: (a) Li, E.; Jia, P.; Liang, L.; Huang, Y. ACS Catal. 2014, 4, 600. (b) Zhao, H.; Meng, X.; Huang, Y. Chem. Commun. 2013, 49, 10513. (c) Shi, Y.-L.; Shi, M. Org. Lett. 2005, 7, 3057. (d) Meng, X.; Huang, Y.; Zhao, H.; Xie, P.; Ma, J.; Chen, R. Org. Lett. 2009, 11, 991. (e) Wang, Y.-Q.; Zhang, Y.; Dong, H.; Zhang, J.; Zhao, J. Eur. J. Org. Chem. 2013, 3764. (f) Yang, L.-J.; Wang, S.; Nie, J.; Li, S.; Ma, J.-A. Org. Lett. 2013, 15, 5214.

(8) For selected cycloaddition examples using aldehydes as electrophiles, see: (a) Xu, S.; Zhou, L.; Ma, R.; Song, H.; He, Z. *Chem.—Eur. J.* **2009**, *15*, 8698. (b) Zhu, X.-F.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett. **2005**, *7*, 1387. (c) Zhu, X.-F.; Schaffner, A.-P.; Li, R. C.; Kwon, O. Org. Lett. **2005**, *7*, 2977. (d) Xu, S.; Zhou, L.; Ma, R.; Song, H.; He, Z. Org. Lett. **2010**, *12*, 544. (e) Wang, L.-F.; Cao, X.-P.; Shi, Z.-F.; An, P.; Chow, H.-F. Adv. Synth. Catal. **2014**, 356, 3383.

(9) For selected cycloaddition examples using azomethine imines as electrophiles, see: (a) Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Guo, H.; Kwon, O. *J. Am. Chem. Soc.* **2011**, *133*, 13337. (b) Jing, C.; Na, R.; Wang, B.; Liu, H.; Zhang, L.; Liu, J.; Wang, M.; Zhong, J.; Kown, O.; Guo, H. Adv. Synth. Catal. **2012**, *354*, 1023.

(10) (a) Li, K.; Hu, J.; Liu, H.; Tong, X. Chem. Commun. 2012, 48, 2900. (b) Jia, Z.-J.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Chem. Commun. 2015, 51, 1054.

(11) Guo, H.; Xu, Q.; Kwon, O. J. Am. Chem. Soc. 2009, 131, 6318.
(12) Zhang, Q.; Meng, L.-G.; Wang, K.; Wang, L. Org. Lett. 2015, 17, 872.

(13) Huang, X.-L.; He, L.; Shao, P.-L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192.

(14) (a) Chan, A.; Scheidt, K. J. Am. Chem. Soc. 2008, 130, 2740.
(b) Yang, L.; Wang, F.; Lee, R.; Lv, Y.; Huang, K.-W.; Zhong, G. Org. Lett. 2014, 16, 3872. (c) Taylor, J. E.; Daniels, D. S. B.; Smith, A. D. Org. Lett. 2013, 15, 6058.

(15) For organic base-catalyzed [2 + 4] cyclizations using  $\alpha_i\beta_i$  unsaturated aldehydes, imines, and ketones as substrates, see: (a) Shi, Z.; Loh, T.-P. Angew. Chem., Int. Ed. **2013**, 52, 8584. (b) Chen, X.-Y.; Wen, M.-W.; Ye, S.; Wang, Z.-X. Org. Lett. **2011**, 13, 1138. (c) Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Org. Lett. **2011**, 13, 5732. (d) Zheng, J.; Huang, Y.; Li, Z. Org. Lett. **2013**, 15, 5064. (e) Wang, X.; Fang, T.; Tong, X. Angew. Chem., Int. Ed. **2011**, 50, 5361. (f) Yao, W.; Dou, X.; Lu, Y. J. Am. Chem. Soc. **2015**, 137, 54. (g) Ashtekar, K. D.; Staples, R. J.; Borhan, B. Org. Lett. **2011**, 13, 5732. (h) Henry, C. E.; Kwon, O. Org. Lett. **2007**, 9, 3069. (i) Dückert, H.; Khedkar, V.; Waldmann, H.; Kumar, K. Chem.—Eur. J. **2011**, 17, 5130.

(16) The X-ray single crystal structure of **3al** is available from the Cambridge Crystallographic Data Centre (CCDC 1058288).

![](_page_3_Figure_13.jpeg)

#### NOTE ADDED AFTER ASAP PUBLICATION

Scheme 1 was corrected on June 12, 2015.